
David Lord

@dal

$ pip install requests



HTTPS



HyperText Transfer Protocol

Mobile apps

Websites

Internet of Things

Application Programming Interfaces

Slack bots



Request

Response

Request

Response

HTTP/1.1

Client Server



HTTP request: GET UQCS homepage
GET /index.html HTTP/1.1

Host: www.uqcs.org.au
Accept: text/html, */*
Accept-Language: en-au
Accept-Encoding: gzip, deflate
Connection: keep-alive

method
path

protocol

headers
as {key: value}

request body
(optional)



HTTP response
HTTP/1.1 200 OK

Content-Length: 48
Connection: close
Content-Type: text/html

<!DOCTYPE html>
<html>
<h1>Welcome</h1>
</html>

protocol response code

response headers

response body/content
(optional)



$ pip install requests



$ pip info requests
You are the client of the protocol

You send requests to the server

52 million downloads last month*

The most downloads of any of today’s libraries 💪

* source

https://pypistats.org/packages/requests


Example code: GET UQCS homepage
GET /index.html HTTP/1.1

Host: www.uqcs.org.au
Accept: text/html, */*
Accept-Language: en-au
Accept-Encoding: gzip, 
deflate
Connection: keep-alive

requests.get(‘https://uqcs.org.au/index.html’)



Behind the scenes
● Requests sets up an HTTPS session (DNS, TLS, all that jazz)
● Crafts HTTP request with query parameters, headers, body

○ Including tricky things like content-length and encoding

● Sends request (in multiple packets) to server
● Blocks waiting for response and assembles it
● Provides response information as tidy object with status code, headers, body, 

etc



POST a form
Content-Type: ‘application/x-www-form-urlencoded’

The format of the web.



POST a form: request

POST /usr/profile HTTP/1.1
Host: uqcs.org.au
User-Agent: sesame-1.0
Cookie: b20gbm9tIG5vbQ==
Content-Type: application/x-www-
form-urlencoded
Content-Length: 43

first_name=Sam&last_name=O%27Brien&
gender=X

url = 'https://uqcs.org.au/usr/profile'

headers = {'User-Agent': 'sesame-1.0',
'Cookie': 'b20gbm9tIG5vbQ=='}

form_data = {'first_name': 'Sam',
'last_name': "O'Brien",
'gender': 'X'}

requests.post(url, headers=headers, 
data=form_data)

raw code



POST a form: response

HTTP/1.1 204 No Content
X-Powered-By: nginx/WAI/Haskell

response = ... # as before

>>> response.status_code
204

>>> response.headers[‘x-powered-by’]
‘nginx/WAI/Haskell’

>>> response.raise_for_status()
None

raw code



POST some JSON
Content-Type: ‘application/json’

The format of the API gods.



JSON

{
"channel": "0AQQDE",
"text": "Hello, world!",
"blocks": [{
"type": "section",
"text": {

"text": "*Hello, world!*",
"type": "mrkdwn"}}]

}

JavaScript Object Notation



Make a JSON request
response = requests.post('https://api.slack.com/ABCDE/31337',

headers={
'Authorization': 'Bearer 1234'},

json={
"channel": "0AQQDE",
"text": "Hello, world!",
"blocks": [{
"type": "section",
"text": {

"text": "*Hello, world!*",
"type": "mrkdwn"}}]

})



Get a JSON response
>>> response.status_code
200

>>> response.json()
{'ok': True, ‘channel’: ‘0AQQDE’}

>>> response.json()[‘ok’]
True

>>> response.json()[‘channel’]
‘0AQQDE’



Other features we don’t have time for
● HTTPS
● Authentication
● Timeouts
● Sessions

○ Cookie jar
○ Connection reuse

● TLS certificates
○ Client certificate
○ Server certificate trust/pinning

● Proxies
● Response streaming
● Parsing web pages


